Simplicial Cohomology with Coefficients in Symmetric Categorical Groups

نویسندگان

  • Pilar Carrasco
  • Juan Martínez-Moreno
چکیده

In this paper we introduce and study a cohomology theory {Hn(−,A)} for simplicial sets with coefficients in symmetric categorical groups A. We associate to a symmetric categorical group A a sequence of simplicial sets {K(A, n)}n≥0, which allows us to give a representation theorem for our cohomology. Moreover, we prove that for any n ≥ 3, the functor K(−, n) is right adjoint to the functor ℘n, where ℘n(X•) is defined as the fundamental groupoid of the n-loop complex (X•). Using this adjunction, we give another proof of how symmetric categorical groups model all homotopy types of spaces Y with πi(Y ) = 0 for all i = n, n+ 1 and n ≥ 3; and also we obtain a classification theorem for those spaces: [−, Y ] ∼= Hn(−, ℘n(Y )). Mathematics Subject Classifications (2000): 18D10, 18G50, 18G60.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Digital cohomology groups of certain minimal surfaces

In this study, we compute simplicial cohomology groups with different coefficients of a connected sum of certain minimal simple surfaces by using the universal coefficient theorem for cohomology groups. The method used in this paper is a different way to compute digital cohomology groups of minimal simple surfaces. We also prove some theorems related to degree properties of a map on digital sph...

متن کامل

On the Second Cohomology Categorical Group and a Hochschild-serre 2-exact Sequence

Résumé. We introduce the second cohomology categorical group of a categorical group G with coefficients in a symmetric G-categorical group and we show that it classifies extensions of G with symmetric kernel and a functorial section. Moreover, from an essentially surjective homomorphism of categorical groups we get 2-exact sequences à la Hochschild-Serre connecting the categorical groups of der...

متن کامل

Equivariant Simplicial Cohomology With Local Coefficients and its Classification

We introduce equivariant twisted cohomology of a simplicial set equipped with simplicial action of a discrete group and prove that for suitable twisting function induced from a given equivariant local coefficients, the simplicial version of Bredon-Illman cohomology with local coefficients is isomorphic to equivariant twisted cohomology. The main aim of this paper is to prove a classification th...

متن کامل

On Local Coefficients of Simplicial Coalgebras

This paper generalizes the notion of local coefficients and fundamental groups of spaces to simplicial coalgebras. We define a Hopf algebra π1(C) from a simplicial coalgebra C as a generalization of a fundamental group, and show that a module overπ1(C) corresponds to a local coefficient of C. As a consequence, the Hoschild cohomology of a Hopf algebraH with a coefficient M coincides with the co...

متن کامل

Digital Borsuk-Ulam theorem

The aim of this paper is to compute a simplicial cohomology group of some specific digital images. Then we define ringand algebra structures of a digital cohomology with the cup product. Finally, we prove a special case of the Borsuk-Ulam theorem fordigital images.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Categorical Structures

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2004